skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Vardhan, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vardhan, S (Ed.)
    We derive the asymptotic properties of the mMKG system (Maxwell coupled with a massive Klein-Gordon scalar field) in the exterior of the domain of influence of a compact set. This complements the previous well-known results, restricted to compactly supported initial conditions, based on the so-called hyperboloidal method. That method takes advantage of the commutation properties of the Maxwell and Klein-Gordon equations with the generators of the PoincarĂ© group to resolve the difficulties caused by the fact that they have, separately, different asymptotic properties. Though the hyperboloidal method is very robust and applies well to other related systems, it has the well-known drawback of requiring compactly supported data. In this paper we remove this limitation based on a further extension of the vector field method adapted to the exterior region. Our method applies, in particular, to nontrivial charges. The full problem can then be treated by patching together the new estimates in the exterior with the hyperboloidal ones in the interior. This purely physical space approach introduced here maintains the robust properties of the old method and can thus be applied to other situations such as the coupled Einstein Klein-Gordon equation. 
    more » « less